rexroth Aug 11 2025

A Bosch Company

Table of contents

s Python runtime environment

Python runtime environment

Python runtime environment
Python Runtime App for ctrIX CORE - Basics

The Python Runtime app contains a Python interpreter that has been specifically extended to interact highly efficiently
with ctrIX MOTION. Thus, scripts specifying motion commands can be processed and can react to the state of ctrIX
MOTION.

Script control via the script manager

A generic script manager is integrated in ctrIX CORE. The script manager can create and control script interpreter
instances. A description of the script manager can be found in the ctrIX CORE Runtime application manual
documentation, chapter Script parser/interpreter.

To run a Python script in the Python runtime environment, these steps have to be executed:

1. Copy the script into the solution (see section "Search paths for Python modules")
2. Creating a Python interpreter instance via script manager

3. Run script in this instance (see section "Script execution")

(The Python interpreter instance can be used repeatedly and only needs to be created once).

Integrated libraries

Two libraries are integrated into the Python runtime environment:

= motion - Specifying commands and reading out of ctrIX MOTION states, see N “Integrated library - motion”
= datalayer - Simple access to the Data Layer, see N “Integrated library - datalayer”
In addition, all Python libraries that are integrated in Python by default (e.g. sys) are available.

Troubleshooting

The error handling of the two libraries is realized via Python exceptions. Each time a function call fails, an exception is
triggered (typically a RuntimeError). This exception can be recorded and the user can use individual troubleshooting. If
the exception is not recorded, the script is canceled and all attached (see motion.attach_obj()) kinematics and axes are
stop (with a minor error).

Name arguments

The name arguments in the functions of both libraries can be used on demand. All named arguments can be used an
unnamed arguments (the sequence is relevant).

Additional Python libraries

Bosch Rexroth AG Page 1

https://docs.automation.boschrexroth.com/unit/3074514940/script-parser-interpreter/latest/de/

rexroth Aug 11 2025

A Bosch Company

Only Python libraries consisting of pure Python scripts can be used in the Python runtime environment. Libraries that
require additional compiled objects are not supported due to the security concept.

If a Python library consisting of pure Python scripts is to be used, it has to be copied to the appropriate search paths
(see section "Search paths for Python modules"). This can be done, for example, via "Manage app data", see
https://docs.automation.boschrexroth.com/doc/820023435/window-manage-app-data/latest/en/. If a Python library is to
be used on a ctrIX CORE, a complete Python runtime environment (including all required compiled objects) can be
integrated into a customized app. In this case, the ctrIX MOTION has to be commanded via Data Layer or data has to be
queried via Data Layer.

It is recommended to use REST calls for this purpose (e.g. with the Requests library,
https://requests.readthedocs.io/en/latest/). The required data (both for commanding and for querying states) are used
as JSON objects. The integrated json library (https://docs.python.org/3/library/json.html) facilitates working with this
data.

Minimal example for REST calls:

import requests

#IP address

ip_addr = "192.168.1.1"

get bearer token

bearer_addr = "https://"+ip_addr+"/identity-manager/api/v2/auth/token"
command_data = {"name":"boschrexroth","password":"boschrexroth"}
res = requests.post(bearer_addr, json=command_data, verify=False)
token = res.json()["access_token"]

send command
res = requests.post(‘https://' + ip_addr + '/automation/api/v2/nodes/motion/axs/' +"Axis1" +'/cmd/pos-abs',
json={"type":"object",
"value":{"axsPos":10,
"buffered":False,
"lim":{"vel":10,
"acc":10,
"dec":10,
"jrkAcc":0,
"jrkDec":0}}},
headers={ 'Authorization': 'Bearer ' +
token },
verify=False)
#get Cmdld
cmdld = res.json()["value"]
print(cmdld)

Search paths for Python modules

The configuration path for the script manager is provided in $SNAP_COMMON (/var/snap/rexroth-
automationcore/common) by the "rexroth-automationcore" app.

Python scripts without relative or absolute path specification are searched in $SNAP_COMMON/solutions.

Bosch Rexroth AG Page 2

https://docs.automation.boschrexroth.com/doc/820023435/window-manage-app-data/latest/en/
https://requests.readthedocs.io/en/latest/)
file:///tmp/KInf_0/cdp-pdf-3932334192569/(https://docs.python.org/3/library/json.html)

rexroth Aug 11 2025

A Bosch Company

Script execution

Imported Python modules are searched in the following order:

Current script directory
s ./

Application modules:

s $SNAP_COMMONY/solutions/activeConfiguration/scripts/user
= $SNAP_COMMONY/solutions/activeConfiguration/scripts/oem
= $SNAP_COMMONY/solutions/activeConfiguration/scripts/bosch

Libraries if available at the time of instance generation:

= $SNAP_COMMONY/solutions/activeConfiguration/scripts/libraries/user
= $SNAP_COMMONY/solutions/activeConfiguration/scripts/libraries/oem
= $SNAP_COMMONY/solutions/activeConfiguration/scripts/libraries/bosch

Bosch Rexroth AG Page 3

	Table of contents
	Python runtime environment
	Python runtime environment
	Python Runtime App for ctrlX CORE - Basics
	Script control via the script manager
	Integrated libraries
	Two libraries are integrated into the Python runtime environment:

	Troubleshooting
	Name arguments
	Additional Python libraries
	Search paths for Python modules
	Script execution
	Script execution
	Current script directory
	Application modules:
	Libraries if available at the time of instance generation:

