
Table of contents
Script parser/interpreter (Python)

Introduction and overview
User interface via Data Layer
Initialization script
Search paths for Python modules
Python functions in the Data Layer

Function (nodes) = datalayer.browse (<path>)
Function <value> = datalayer.read (<path>)
Function datalayer.write(<path>, <value>)
Function datalayer.create(<path>, <value>)
Function datalayer.remove(<path>)
Function datalayer.read_json(<path>)
Function datalayer.write_json(<path>, <value>)
Function datalayer.create_json(<path>, <value>)

Script parser/interpreter (Python)
Script parser/interpreter (Python)

Introduction and overview
Scripts can be executed with the ctrlX CORE. Scripts are simple text files with commands in the respective script
language. The commands of the script file are subsequently processed during the execution. Very simple and intuitive
command sequences can be created.

To execute a script, an app has to be installed with the respective script language. The ctrlX AUTOMATION currently
provides the script language Python. More script languages are planned. Each script language is extended by specific
functions for ctrlX CORE. Their specific syntax is described in the functions/commands.

All scripts are part of the configuration and have to be stored in the “Solution” to be processed in the ctrlX CORE.

User interface via Data Layer
To process a script, create the script interpreter instance first. Specify the script language in which the instance is to be
processed. Any number of script interpreter instances can be created (limited by the ctrlX CORE memory). The instances
run completely independent from each other.

After a script interpreter instance has been created, an execution script can be specified. The script starts automatically.

To query information on the current state, use the interfaces in the ↘ data layer A sequence control is also possible. It
can be used to cancel the script processing for example.

Jul 16 2025

Bosch Rexroth AG Page 1

https://www.python.org/

Fig. 34: Sequential control

Initialization script
An initialization script can be configured in the ctrlX CORE. When starting the ctrlX CORE, a script interpreter instance is
created automatically and the configured script is started in this instance.

This script can for example:

Creating additional script interpreter instances
Starting more scripts in the generated script interpreter instances
Writing a configuration into the Data Layer
Executing first commands
etc.

Search paths for Python modules
The configuration path for the script manager is provided in $SNAP_COMMON (/var/snap/rexroth-
automationcore/common) by the "rexroth-automationcore" app.

Jul 16 2025

Bosch Rexroth AG Page 2

Python scripts without relative or absolute path specification are searched in $SNAP_COMMON/solutions.

Script execution
For the "robot” instance, process the $SNAP_COMMON/solutions/activeSolution/script/loadWorkpiece.py script.

Under the Data Layer node script/instances/robot/cmd/file, the payload
{"name":"activeSolution/script/loadWorkpiece.py","param":"pallet1"} is posted.

Optionally, the absolute path specification can be realized using "/var/snap/rexroth-
automationcore/common/solutions/activeSolution/script/loadWorkpiece.py".

Imported Python modules are searched in the following order:

Current script directory
./

Application modules:
$SNAP_COMMON/solutions/activeConfiguration/scripts/user
$SNAP_COMMON/solutions/activeConfiguration/scripts/oem
$SNAP_COMMON/solutions/activeConfiguration/scripts/bosch

Libraries, if available at the time of instance generation:
$SNAP_COMMON/solutions/activeConfiguration/scripts/libraries/user
$SNAP_COMMON/solutions/activeConfiguration/scripts/libraries/oem
$SNAP_COMMON/solutions/activeConfiguration/scripts/libraries/bosch

Python functions in the Data Layer

Function (nodes) = datalayer.browse (<path>)
(nodes) = datalayer.browse (<path>)
The function browses through a specified Data Layer path and returns all nodes of a level below this path.

<path>
String, Data Layer path to be browsed through
(nodes)
Tuple of node names

Function <value> = datalayer.read (<path>)
<value> = datalayer.read (<path>)
The function reads an element of the Data Layer and returns its value. Only simple types are supported.

<path>
String, Data Layer path to be read
<value>
Value node (only simple values are supported)

Jul 16 2025

Bosch Rexroth AG Page 3

Function datalayer.write(<path>, <value>)
datalayer.write(<path>, <value>)
The function writes an element of the Data Layer. Only simple types are supported.

<path>
String, Data Layer path to be written
<value>
Value to be written (only simple values are supported)

Function datalayer.create(<path>, <value>)
datalayer.create(<path>, <value>)
The function creates an element with the specified value in the Data Layer. Only simple types are supported.

<path>
String, Data Layer path to be created
<value>
Value node (only simple values are supported)

Function datalayer.remove(<path>)
datalayer.remove(<path>)
The function deletes an element of the Data Layer.

<path>
String, Data Layer path to be deleted

Function datalayer.read_json(<path>)
datalayer.read_json(<path>)
The function reads an element of the Data Layer and returns its value as JSON string.

<path>
String, Data Layer path to be read
<value>
Value of the node as JSON string

Function datalayer.write_json(<path>, <value>)
datalayer.write_json(<path>, <value>)
The function writes an element of the Data Layer. It is specified as JSON string.

<path>
String, Data Layer path to be written
<value>
Value to write the JSON string

Function datalayer.create_json(<path>, <value>)

Jul 16 2025

Bosch Rexroth AG Page 4

datalayer.create_json(<path>, <value>)
The function creates an element with the specified value in the Data Layer. The value is a JSON string

<path>
String, Data Layer path to be created
<value>
Value of the node JSON string
<result>
Result during the creation as JSON string (only if successful)

Introduction and overview

Introduction and overview
Scripts can be executed with the ctrlX CORE. Scripts are simple text files with commands in the respective script
language. The commands of the script file are subsequently processed during the execution. Very simple and intuitive
command sequences can be created.

To execute a script, an app has to be installed with the respective script language. The ctrlX AUTOMATION currently
provides the script language Python. More script languages are planned. Each script language is extended by specific
functions for ctrlX CORE. Their specific syntax is described in the functions/commands.

All scripts are part of the configuration and have to be stored in the “Solution” to be processed in the ctrlX CORE.

User interface via Data Layer

User interface via Data Layer
To process a script, create the script interpreter instance first. Specify the script language in which the instance is to be
processed. Any number of script interpreter instances can be created (limited by the ctrlX CORE memory). The instances
run completely independent from each other.

After a script interpreter instance has been created, an execution script can be specified. The script starts automatically.

To query information on the current state, use the interfaces in the ↘ data layer A sequence control is also possible. It
can be used to cancel the script processing for example.

Jul 16 2025

Bosch Rexroth AG Page 5

https://www.python.org/

Fig. 34: Sequential control

Initialization script

Initialization script
An initialization script can be configured in the ctrlX CORE. When starting the ctrlX CORE, a script interpreter instance is
created automatically and the configured script is started in this instance.

This script can for example:

Creating additional script interpreter instances
Starting more scripts in the generated script interpreter instances
Writing a configuration into the Data Layer
Executing first commands
etc.

Search paths for Python modules

Jul 16 2025

Bosch Rexroth AG Page 6

Search paths for Python modules
The configuration path for the script manager is provided in $SNAP_COMMON (/var/snap/rexroth-
automationcore/common) by the "rexroth-automationcore" app.

Python scripts without relative or absolute path specification are searched in $SNAP_COMMON/solutions.

Script execution
For the "robot” instance, process the $SNAP_COMMON/solutions/activeSolution/script/loadWorkpiece.py script.

Under the Data Layer node script/instances/robot/cmd/file, the payload
{"name":"activeSolution/script/loadWorkpiece.py","param":"pallet1"} is posted.

Optionally, the absolute path specification can be realized using "/var/snap/rexroth-
automationcore/common/solutions/activeSolution/script/loadWorkpiece.py".

Imported Python modules are searched in the following order:

Current script directory
./

Application modules:
$SNAP_COMMON/solutions/activeConfiguration/scripts/user
$SNAP_COMMON/solutions/activeConfiguration/scripts/oem
$SNAP_COMMON/solutions/activeConfiguration/scripts/bosch

Libraries, if available at the time of instance generation:
$SNAP_COMMON/solutions/activeConfiguration/scripts/libraries/user
$SNAP_COMMON/solutions/activeConfiguration/scripts/libraries/oem
$SNAP_COMMON/solutions/activeConfiguration/scripts/libraries/bosch

Python functions in the Data Layer

Function (nodes) = datalayer.browse (<path>)

Function (nodes) = datalayer.browse (<path>)
(nodes) = datalayer.browse (<path>)
The function browses through a specified Data Layer path and returns all nodes of a level below this path.

<path>
String, Data Layer path to be browsed through
(nodes)
Tuple of node names

Function <value> = datalayer.read (<path>)

Function <value> = datalayer.read (<path>)
<value> = datalayer.read (<path>)

Jul 16 2025

Bosch Rexroth AG Page 7

The function reads an element of the Data Layer and returns its value. Only simple types are supported.

<path>
String, Data Layer path to be read
<value>
Value node (only simple values are supported)

Function datalayer.write(<path>, <value>)

Function datalayer.write(<path>, <value>)
datalayer.write(<path>, <value>)
The function writes an element of the Data Layer. Only simple types are supported.

<path>
String, Data Layer path to be written
<value>
Value to be written (only simple values are supported)

Function datalayer.create(<path>, <value>)

Function datalayer.create(<path>, <value>)
datalayer.create(<path>, <value>)
The function creates an element with the specified value in the Data Layer. Only simple types are supported.

<path>
String, Data Layer path to be created
<value>
Value node (only simple values are supported)

Function datalayer.remove(<path>)

Function datalayer.remove(<path>)
datalayer.remove(<path>)
The function deletes an element of the Data Layer.

<path>
String, Data Layer path to be deleted

Function datalayer.read_json(<path>)

Function datalayer.read_json(<path>)
datalayer.read_json(<path>)
The function reads an element of the Data Layer and returns its value as JSON string.

<path>
String, Data Layer path to be read
<value>

Jul 16 2025

Bosch Rexroth AG Page 8

Value of the node as JSON string

Function datalayer.write_json(<path>, <value>)

Function datalayer.write_json(<path>, <value>)
datalayer.write_json(<path>, <value>)
The function writes an element of the Data Layer. It is specified as JSON string.

<path>
String, Data Layer path to be written
<value>
Value to write the JSON string

Function datalayer.create_json(<path>, <value>)

Function datalayer.create_json(<path>, <value>)
datalayer.create_json(<path>, <value>)
The function creates an element with the specified value in the Data Layer. The value is a JSON string

<path>
String, Data Layer path to be created
<value>
Value of the node JSON string
<result>
Result during the creation as JSON string (only if successful)

Jul 16 2025

Bosch Rexroth AG Page 9

	Table of contents
	Script parser/interpreter (Python)
	Script parser/interpreter (Python)
	Introduction and overview
	User interface via Data Layer
	Initialization script
	Search paths for Python modules
	Script execution
	Current script directory
	Application modules:
	Libraries, if available at the time of instance generation:

	Python functions in the Data Layer
	Function (nodes) = datalayer.browse (<path>)
	Function <value> = datalayer.read (<path>)
	Function datalayer.write(<path>, <value>)
	Function datalayer.create(<path>, <value>)
	Function datalayer.remove(<path>)
	Function datalayer.read_json(<path>)
	Function datalayer.write_json(<path>, <value>)
	Function datalayer.create_json(<path>, <value>)

	Introduction and overview

	Introduction and overview
	User interface via Data Layer

	User interface via Data Layer
	Initialization script

	Initialization script
	Search paths for Python modules

	Search paths for Python modules
	Script execution
	Current script directory
	Application modules:
	Libraries, if available at the time of instance generation:
	Python functions in the Data Layer
	Function (nodes) = datalayer.browse (<path>)

	Function (nodes) = datalayer.browse (<path>)
	Function <value> = datalayer.read (<path>)

	Function <value> = datalayer.read (<path>)
	Function datalayer.write(<path>, <value>)

	Function datalayer.write(<path>, <value>)
	Function datalayer.create(<path>, <value>)

	Function datalayer.create(<path>, <value>)
	Function datalayer.remove(<path>)

	Function datalayer.remove(<path>)
	Function datalayer.read_json(<path>)

	Function datalayer.read_json(<path>)
	Function datalayer.write_json(<path>, <value>)

	Function datalayer.write_json(<path>, <value>)
	Function datalayer.create_json(<path>, <value>)

	Function datalayer.create_json(<path>, <value>)

